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OPTIMAL CONTROL OF SOME BILINEAR SYSTEMS WITH AFTEREFFECT* 

V.B. KOLMANOVSKII and N.I. KOROLEVA 

The optimal control of bilinear systems with aftereffect is considered. 
A class of systems is identified for which the optimal control is con- 
structed by solving linear differential equations. Recursive formulas 
are derived for this solution, As an example, we analyse a bilinear 
model with aftereffect of the process of bacterial growth in a micro- 
biological controlled environment. 

A system is usually called bilinear if the evolution equations are 
linear in the phase coordinates for fixed controls and in the controls 
for fixed coordinates /l, 2/. Systems of this kind are used for modelling 
a variety of control processes, including processes in biological systems 
/3-5/, etc. 

1. statetnent of the problem. optimtity conditions. For simplicity, we will initially 
consider controlled systems with one constant delay and a scalar control. 

i (t) = A,(t) I (t - h) + (A (t) 5 0) + 13 (W ’ (1.1) 

0 < t < T, I E R,, u E RI, h = cona > 0 

Here A (t)? and B (t) are matrices with given piecewise-continuous elements, A, 0) 
is a piecewise-continuously differentiable matrix. The solution of Eq.fl.1) is determined 
by the initial condition 

x (6) = cp (8), --h<e<o, cP@)ER, (1.2) 

where (P@)(--h<6 GO) is a given piecewise-continuous bounded function. Let D be the space 
of such functions. The control u in (1.1) should be designed as u = u(t,cp) which is 
piecewise-continuous in t and continuous in cp~ D, minimizing the performance functional 

T 

5’ CT) N,x V’) + s Ix’ (t) N, 0) x 0) + u’ 0) N (0 u (t) i- 

f(tvlt)]dt; Ni>Ov N(t)>0 (1.3) 

Here xi is the section of the trajectory x (t +0)(--h<e GO). Xn (1.3) the elements of 
the matrices N,(t) and N(t) are piecewise-continuous and the form of the functional 

f k 4 is given below. 
The choice of f in the functional (1.3) is based on the principle of generalized /6/ 

and the dynamic programming method /I/, as modified for systems with aftereffect. Let us 
describe this method. 

&note by v(t, cp)(cp E D) the Bellman functional of problem (l.l)-(1.3). The Bellman 
equation has the form 

inf [v'(t, cp) + cp' (O)N, (t)cp (0) -t- N (t)u' + f (tY CP)] = 0 
UER, 

V(T, cp) = cp' (O)N,cp (0) (1.4) 

Here v'(t,cp) is the total derivative of the functional Y along the trajectory of 
system (1.1) for the value of the control parameter u occurring in (1.4). We stress that the 
infimum in (1.4) is over the scalar paraemter U. 

The solution of the problem (1.4) is sought in the form 

_ ~~ ~~ ~~~ 
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where P, Q and R are to be determined. Here and throughout Sect.1, integration over T is 
between.the limits -h to 0. From (1.5) it follows that we should have R(t,z,p) R’(t,p,t). 

Compute V, substitute the result into (1.4), and replace z*(1) from Eq.cl.1). This 
gives a control that minimizes the left-hand side of (1.4), 

u. (t, zt) = - N-l (t) [A (t) .z (t) + B (t)]’ [P(t) x (t) + 1 Qk T) 5 0 -1 7) dz] (1.6) 

Now choose f SO as to eliminate the non-linear terms in P, Q, R from Eq.(1.4). To this 
end, we should set 

f = NuO= (1.7) 

Substituting (1.5)- (1.7) into (1.4) and equating to zero the quadratic forms in 2 (t) 
and z(t + 6), we obtain a system of linear differential equations for the matrices p (% 
Q (& r), R 0, 7, p): 

p' (t) f Q 0, 0) + Q' (t, 0) + N, @) = 0 
(alat - d/d@ (t, .c) + R (t, t, 0) = 0 

(d/at-didz-didp)R (1, r, p) = 0 

O<t,< T, -h<r, p,<O 

(1.8) 

Similarly equating to zero the quadratic forms in 5 (f - h) and applying (1.4), we 
obtain the boundary conditions 

P (2') = N,, Q (T, 7) = o, R (T, 7, E;) EE 0, --h < 7, p < o 

Q’ (t, -4) = A,’ (t)P (t), R (t, 7, P) = R’ (ty 1’7 z) 

R (t, -4, x) + R’ (t, T, --h) = 2A1’ (t)Q (t, T) 

o<ttTT,--hSr,p<o 

(I.3 

Note /0/ that in the class of piecewise-continuously differentiable bounded functions 
there exists a unique solution P, Q, R of the boundary value problem (l-8), (1.9) if the 
matrix N,(t) is bounded and piecewise-continuous and the matrix A,(t) is differentiable 
with respect to t and has piecewise-continuous bounded derivatives. 

In order to prove the optimality of the control (1.6), we have to establish the existence 
of a solution s"(t) of problem (1.1)) (1.2) for u = u0 which is bounded in the interval 
10, T) . Since the conditions of the local existence theorem /9/ are satisfied, it suffices 
to check the boundedness of the function s(t). 

By (1.41, and (1.7), we have L-(!,z,")< V(O,cp). This and (1.5) give 

I .z (q 12 <y (0, @) + c (I z (t) 1s I I (1f T) [ dt ” (S j 5 (t f T) 1 dT)g , c = const > 0 (1.10) 

From (1.10) , using the Cauchy inequality, we conclude that for any P>O, 

1 5 (t) /* < v (0, cp) + c (Eh 1 + (t) 12 -1. (h + e-1) [ 1 z (t -+- T) 12 dT) 

Taking e>D so that ah<1 and applying the Gronwall-Bellman lemma, we prove the 
existence of a bounded solution of problem (l.l), (1.2) in [O,Tl. 

Thus, the design of the optimal control (1.6) and the determination of the corresponding 
value of the performance criterion (1.5) have been reduced to the solution of problem (1.8) 
and (1.9). 

2. Construction of the solutio?I of problem (1.8) and (1.9). bet us describe the method 
of solving problem (1.8) and (1.9). Note that the value of the functional 

I (t) = ir’ (T) iV,s (T) + $ z’ (s) N, (s) s (s) ds (2.1) 

on the trajectories of the system 

z' (s) = A, (s)z (s - h), s,> t; c (t + 0) = cp (8). -IL .’ o : 0 

is defined by (1.5). 

(2.2) 
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First let us find J (t) for T -h< t.< T. In the case, J(t) can be determined in two 
ways. On the one hand, for t> T--h, system (2.2) is without aftereffect and therefore 
J(t) can be found analytically as a quadratic farm of the initial conditions. On the other 
hand, J(t) is defined by (1.5). Equating the values of J(t) obtained in these different 
ways, we obtain expressions for P, Q, R for T - h Q t < T. We then determine P, Q, R for 
T - 2h< t< T. To this end, we represent J(t) in the form 

T--h 

l(t) = s x’(s)N,(s)t(s)ds+ I, 
t 

J, = 2’ (7’) N,s (7’) + j z’ (s) N, (s)z (s) ds 
T-h 

and substitute (1.5) for J,,using the matrices P, Qr R obtained in the previous step for 
T-h<t<T. We thus obtain that for T - 2h< t -< T the functional J (t) is also a 
quadratic form of the trajectory. Therefore, applying the same comparison technqiue, we find 
P, Q, R for T - 2h < t < T. Proceeding along the same lines, we can determine the matrices 
P, Q, R for all TV IO, Tl. 

We will now give the corresponding expressions. 
Represent the solution of the boundary value problem Cl.@, (1.9) as the sum of two 

solutions: the first solution for N, = 0 and an arbitrary matrix N Ir and the second solution 
for N1 = 0 and an arbitrary matrix N1. Direct substitution will show that the first sol- 
ution ( N1 = 0) has the form 

P (0 = B,’ (W,& (0, Q (t, T) = --B,’ (t)N,B,’ (t + T) 

R (t, ‘c, p) = B,” (t + QN,B,’ (t + p), O< t < T, -h,<~, p < 0 
(2.3) 

where the matrix 6 U) satisfies the relationships 

B,’ (t) = -B, (t + h)A, (t + h), 0 < t < T 

B, (s) = 0, s> T; B, (T) = 1 
(2.4) 

and at the point of discontinuity T - h of the derivative B,'(t) it is defined by left 
continuity. 

Let us give the recursive formulas for the second solution (N, = 0). Let ti = T - ih, 

where i = 0, I,.... For tl<<t< T, we have 

P(t)=f N,(s)&, Q(t,q= T‘ N,(s)ds.A,(t+z+h) 
f f+;+h 

R (t, T, p) = A,’ (t + T + h) i N,(s)h.A,@+p+h) 
1+h+marv, P) 

and the matrix AZ for ti+l<t<tf and -h<z<O is given by 

A, (t + T f h) = A, (t + z + h), --h < ‘c < -t + ti+l 

4, (t + 7 + h) = 0, -t + ti+l < t < 0 

NOW for ti,,,< t < ti let 

Q, (ti, T -t t - ti) = 
Q (tiv T + t - ti), - t + tj+, < T < 0 
o 

, --ST<-t+ti+, 

similarly define Rl(b,z + t -tti, p) as a function of ? for any fixed p. 
For ti+l,< t< ti, -t f t~+l<~,p<O, we have the equality 

Rs(tiv r + t - fi, p + t - ti) = R (ti. r + t - ti, p + t - ti) 

If at least one of the arguments 'I or p does not belong to the interval I--t + ti+1, 01, 
then R, (ti, z + t - ti, p + t - ti) = 0. 

Now for ti+l< t < tf , we have 
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P (t) = i N, (s) ds + P (t,) + 
t-t< 

5 1 R(tt, S, a)dsda 
t-it I-ti 

(2.5) 

The matrix & satisfies the equality 

Q(t.‘)=~t+~+hN,(s)ds+P(fl)+ t~tQ(t14ds+ i 
f Q(tivS)ds + j da S R (ti, s, a) &]A, (t + T f h) -I- 

t++,+ t-q t--t,+1+r 

Finally, for R we have 

R (6 T’, P) = A,’ (t + T + h) [ 5 Nz (S) ds + P (ti) -f 
t+h+lnax(T. PI 

f Q (ti. s)ds f f Q (tit S) ds + 
t-ti+t+P ‘-‘i+,+- 

f da f 
f-r*+,+l 

R (tiy ~9 4 ds] -4, (t + P + h) + 
+++ 

A,(t+Tfk)[Q,(ti,tt-p-tti)+ { R,(ti,svt+P-tt)dS]+ 

t+++t 

[Q&t t+z---d-f- i 
W-ti+l 

RI (tiy t + T - ti, S) ds] A, (t + p -/- h) + 

fh (tit t + z - tr, t + p - ti) (2.7) 

The recursive formulas (2.5)-(2.7) define the second solution of the boundary value 
problem (1.8) and (1.9) required. 

3. SasGe?lerVztiaotions. 
Let US generalize our results to a controlled system of the form 

z' (t) = A, (t) x (t) + A, (t) x (t - h) + i G (t, s) x (t -k s) ds + B (t) u i 
--li 

jz uj [ Asj (t) 6 (t) -t- A,j (t) x (t - hj) + 

s’ G,, (t. s) x 0 + s) ds] t t.> 0; x(t) E R,, u E 4, (3.1) 

-4 

The elements of the matrices A,, G,B,A3jrAhj, Glj are given piecewise-continuous functions, 
the elements of the matrix A, are piecewise-continuously differentiable functions, and h, hj 
and +I are given non-negative constants. 

The functional being minimized has the form (1.3), andtheinitial condition is (1.2). 
Let bj, (j = 1, . , ., m) be the columns of the matrix B. Consider the nXm matrix F (L 4 
with the j-th coluam 

(3.2) 

Using this notation, we rewrite Eq.(3.1) in the form 
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0 

x’ (t) = A, (t) x (t) + A, (t) x (t - 4 + s G 0, s) x 0 + s) ds + F (t, x1) u (3.3) 
-Ii 

Modifying the analysis of Sect.1 to allow for the particular form of Eq.(3.1), we con- 
clude that the optimal control is given by 

uo (tv .xt) = - N-l (4 F’ 0, 21) [P (4 x (t) + f Q (t, z) 5 (t + 7) dr 1 (3.4) 
-h 

The optimal value of the functional (1.3) for 

f (L 4 = 4’ 0, G% (L 4 
is given by (1.5). The matrices P, &, R in (3.41, (1.5) satisfy the linear equations 

p’ (t) + P (t)A (t) + A’ (t)P (t) + 0' (k 0) + Q (tt 0) f 
N,(t) = 0, 0 < t Q T 

P (t)G (t, T) + A’ (t)Q (t, 7) + R (t,o, 4 + (a/at - a@dQ (L 4 = 0 
G' (t, r)Q (t, p) + Q’ (t, T)G (h P) + (a/at - a/h - aiap)R k z, P) = 0 

(3.5) 

The boundary conditions for system (3.5) remain as before (1.9). Note that although the 
Optimal Control (3.4) and the trajectory depend on the delays hj and %J,the optimal value of 
the functional (1.5) for f = u,'Nu, is independent of the delays. In particular,itfollows 
that for h = 0 the optimal value of the functional (3.2) is independent of the initial f&- 
tion m(S). for S< 0 and is determined entirely by the value of v(O), while both the 
trajectory and the control essentially depend on the initial function cp. As in Sect.2, we 
can write the solution of the boundary value problem (3.51, (1.9) for GE 0 in a form 
similar to (2.3)) (2.5)-(2.7). 

4. Baxmpte. 

Consider the control of bacterial growth and the formation of a microbiological product 
in a closed vessel. Continuous reproduction of micro-organisms is used in bacteriological 
research, in ferment production, and in biological effluent processing /lo, ll/. 

A certain mass of active bacteria is placed in a vessel equipped with an entrance for 
nutrients and an exit for extracting the product. The bacteria consume the nutrients, 
produce the output product during a finite length of tiw, reproduce, and then lose their 
viability. 

This process can be described by a bilinear model of the form 

m’ (t) = v(t) m (t) - u (t) m(t) - m (t - z) 

s' (t) = --y (t) k,-‘m (t) - u (t) s (t) f S+ (t) 
(4.1) 

The first equation describes the biomass balance in the closed vessel,'the second 
characterizes the synthesis oftheproduct. Here, m(f) is the volume of the microbiological 
mass, s 0) is the output product volume, u(t) is the nutrient volume, y(t) is the rate of 
growth of the bacteria, n(f--z) allows forthe finite active lifetime of the bacteria 7, and 
k, and sI. are constants. 

Initially, at to, 
s (to) = 0, m (to) = no, n (to + 8) = 0, --5 < 0 < 0 (4.2) 

The problem is to achieve a fixed volume of the output product 3% in a finite time while 
minimizing the consumption of nutrients. The performance criterion for this problem is 
taken in the form 

(4.3) 

Fig.1 plots the phase trajectories for m(t) and s (t) under the optimal control con- 
structed by the proposed method. 

The numerical solution of the problem was obtained for the following parameter values: 
t, = 0, T = 3, r = 1, s, = 3.5, s0 = 1.5, k, = 52, y(t) = 0.05, fl, = fJz = 1, a = 1, n,, = 4. 

The graphs show that s tends to s0 and m tends to zero. 
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